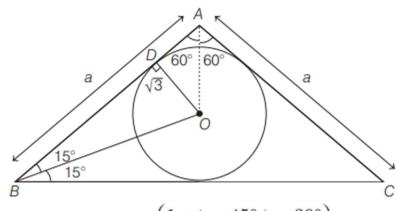
Question: -

In radius of a circle which is inscribed in a isosceles triangle one of whose angle is $2\pi/3$, is $\sqrt{3}$, then area of triangle (in sq units) is (2006, 2M)

(a)
$$4\sqrt{3}$$

(b)
$$12 - 7\sqrt{3}$$

(c)
$$12 + 7\sqrt{3}$$


(d) None of these

Solution: -

Let AB = AC = a and $\angle A = 120^{\circ}$.

$$\therefore$$
 Area of triangle = $\frac{1}{2} a^2 \sin 120^\circ$

where,
$$a = AD + BD = \sqrt{3} \tan 30^{\circ} + \sqrt{3} \cot 15^{\circ}$$

= $1 + \frac{\sqrt{3}}{\tan (45^{\circ} - 15^{\circ})}$

$$\Rightarrow \qquad a = 1 + \sqrt{3} \left(\frac{1 + \tan 45^{\circ} \tan 30^{\circ}}{\tan 45^{\circ} - \tan 30^{\circ}} \right)$$
$$= 1 + \sqrt{3} \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right) = 4 + 2\sqrt{3}$$

:. Area of a triangle

$$=\frac{1}{2}(4+2\sqrt{3})^2\left(\frac{\sqrt{3}}{2}\right)=(12+7\sqrt{3})$$
 sq units